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ФИЗИКАЛЫҚ МАЯТНИКТЕРДІҢ ҚОЗҒАЛЫСЫНЫҢ 

МАТЕМАТИКАЛЫҚ МОДЕЛІ ЖӘНЕ ОЛАРДЫ  

ШЕШУДІҢ ЖОЛДАРЫ 

 
Аңдатпа. Физикалық маятниктің қозғалыс моделі қазіргі кезде физика 

саласында ғана емес, қазіргі заманғы техника мен ғылымда да үлкен маңызға ие. 

Маятниктің қозғалыс моделін қолданудың негізгі бағыттары: уақытты дәл өлшеу 

жүйелерінде, яғни бұрын тек механикалық сағаттарда пайдаланылса, бүгінде маятник 

принципі резонаторлық жүйелердің, синхронды генераторлардың және датчиктердің 

тұрақтылығын қамтамасыз ету үшін қолданылады. Инженерлік және құрылыс 

саласында ғимараттардың сейсмотұрақтылығын арттыру мақсатында, көпірлер мен 

мұнараларда тербелістерін есептеу кезінде, аспалы құрылғылар мен механизмдердегі 

динамикалық тепе-теңдікті бағалау үшін көп қолданысқа ие. Сонымен қатар, 

сейсмология және геофизикада жер сілкінісі кезінде маятниктің тербелісі арқылы 

жер қабатының қозғалысын тіркей алады, яғни, сейсмологиялық деректерді нақты 

талдауға және жер дүмпулерінің энергиясын есептеуге мүмкіндік береді. Осыған 

байланысты физикалық маятниктердің жұмысын талдау, оның қолданыс аясын 

аңықтау және қозғалыс түрлерін математикалық тұрғыдан зерттеу өзекті мәселе 

болып табылады. 

Тірек сөздер: тербеліс, физикалық маятник, амплитуда, резонанс, период, 

жиілік, потенциалдық энергия. 
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Кіріспе. Физикалық маятниктің қозғалыс моделі қазіргі кезде физика 

саласында ғана емес, қазіргі заманғы техника мен ғылымда да үлкен маңызға 

ие. Маятниктің қозғалыс моделін қолданудың негізгі бағыттары: уақытты дәл 

өлшеу жүйелерінде, яғни бұрын тек механикалық сағаттарда пайдаланылса, 

бүгінде маятник принципі резонаторлық жүйелердің, синхронды 

генераторлардың және датчиктердің тұрақтылығын қамтамасыз ету үшін 

қолданылады [1]. Инженерлік және құрылыс саласында ғимараттардың 

сейсмотұрақтылығын арттыру мақсатында, көпірлер мен мұнаралардың 
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тербелістерін есептеу кезінде, аспалы құрылғылар мен механизмдердегі 

динамикалық тепе-теңдікті бағалау үшін көп қолданысқа ие. 

Тыныштық күйден ауытқыған маятникке ауырлық күші G әсер етеді 

дейтін болсақ, топсадағы үйкеліс күшін ескермей отырып, G күшінің х осіне 

қарағандағы күш моментін келесі түрде өрнектейміз [2]:  

 

𝑀𝑥(𝐺) = 𝐺𝑑 sin 𝜑,             (1) 

 

мұндағы: d – айналу осінен ауырлық ортасына дейінгі арақашықтық. Күш 

моментінің таңбасының теріс болуы G-күші денені сағат тілімен бағыттас 

болуына байланысты.  

Мұнда, қандай да оське қарағанда айналмалы қозғалыс жасайтын дене 

қозғалысының дифференциалдық теңдеуін құру үшін келесі теңдеуді 

қолданамыз:  

 

𝐽𝑥𝜑̈ = ∑ 𝑀𝑖𝑥(𝐹)              (2) 

 

мұндағы: Jx – х осіне қарағандағы маятниктің инерциялық моменті, F – әсер 

ететін күш, бізде F = G. Онда (2) теңдеуге сәйкес физикалық маятниктің 

қозғалысының дифференциалдық теңдеуі келесі түрде болады:  

 

𝐽𝑥𝜑̈ = −𝐺𝑑 sin 𝜑  

 

Теңдеудің екі жағын да Jx – инерциялық моментке бөліп жіберсек,  

 

𝜑̈ +
𝐺𝑑

𝐽𝑥 sin 𝜑
= 0              (3) 

 

(3) теңдеуін физикалық маятниктің дифференциалдық теңдеуі деп 

атайды.  

(3) дифференциалдық теңдеуі – сызықсыз. Мұндай теңдеулерді шешу 

күрделі мәселе [2]. Сондықтан оны сызықтандыру негізінде sinφ ≈ φ деп 

алайық, яғни φ – бұрышы үлкен емес. Онда (3) теңдеуін келесі түрде жазамыз 

[3]: 

 

𝜑̈ +
𝐺𝑑

𝐽𝑥𝜑
= 0               (4) 

 

Жаңа белгілеу енгізсек, G d/ Jx = K2   немесе   K = √𝐺𝑑/Jx ,  мұндағы К-

ны тербелістің жиілігі деп атайды. Онда  (4) теңдеуі келесі түрде болады:   

 

𝜑̈ + 𝐾2𝜑 = 0              (5) 

 

(5) дифференциалдық теңдеуін маятниктің аз ауытқудағы теңдеуі деп 

атайды. Оның шешімін келесі түрде іздейді:  

 

𝜑 = 𝐶1 cos 𝑘𝑡 + 𝐶2 sin 𝑘𝑡            (6) 

 

немесе  

 

𝜑 = 𝐴 sin(𝑘𝑡 + 𝛽)             (7) 
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мұндағы: А – маятник тербелісінің амплитудасы, β – тербелістің бастапқы 

фазасы деп атайды. Ал, тербелістің периодын келесі формуламен анықтайды: 

 

𝑇 =
2𝜋

𝑘
               (8) 

 

Ақырлы амплитуда жұмыс істейтін физикалық маятниктің тербелісін 

қарастырайық. Маятниктің ұзындығын L деп, вертикальдан ауытқуын Y деп 

белгілейік. (1-сурет) қозғалыс мөлшерінің моментінің өзгеруі туралы 

теореманың негізінде физикалық маятниктің қозғалыс заңдылығының 

математикалық моделін құрамыз. 
 

 
 

Сурет 1. Физикалық маятник 

 

Механикадан белгілі жоғарыдағы теореманы келесі түрде өрнектейміз 

[4]: 

 
𝑑𝐿0

𝑑𝑡
= ∑ 𝑀0(𝐹𝑖),   

 

мұндағы 𝐿0 – O нүктесуне қарағандағы қозғалыс мөлшерінің моменті, 𝑀0(𝐹𝑖) 

– А нүктесіне әсер етіп тұрған күштердің О нүктесіне қарағандағы моменті 

  𝐿0 = 𝑚𝜗𝑙 = 𝑚𝜑𝑙 ∗ 𝑙 = 𝑚𝑙2𝜑, 𝑀0(𝐹𝑖) = −𝑚𝑔𝑙 sin 𝜑 

 
𝑑

𝑑𝑡
(𝑚𝑙2𝜑̇) = −𝑚𝑔𝑙 sin 𝜑 , 𝑚𝑙2𝜑 = −𝑚𝑔𝑙 sin 𝜑̈    

 

𝜑̈ =
−𝑔

𝑙
sin 𝜑     немесе     𝜑̈ +

𝑔

𝑙
sin 𝜑 = 0 

 

Соңғы теңдеуден физикалық маятниктің қозғалысының 

дифференциалдық теңдеуін аламыз. Онда нүктенің қозғалысын өрнектейтін 

теңдеудің 𝑂𝑥𝑦 фазалық жазықтықта өрнектейтін теңдеулерін төмендегідей 

жазсақ, 

 
𝑑𝑥

𝑑𝑡
= 𝑦,  

 
𝑑𝑦

𝑑𝑡
= −

𝑔

𝑙
sin 𝑥,  

 

мұндағы: 𝑥 = 𝜑, 𝑦 = 𝜑. 
Онда бұл теңдеулер келесі түрде өрнектеледі:  

 
𝑦2

2
= −

𝑔

𝑙
cos 𝑥 = ℎ  
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немесе 

 
𝑦2

2
=

𝑔

𝑙
(cos 𝑥 − cos 𝑥0),                                (9) 

 

мұндағы 𝑥0 – маятниктің вертикальдан бастапқы ауытқуы. E(x) функциясы 

мен h тұрақтылары сәйкесінше келесі шамалармен өрнектеледі [5]. 

 

𝐸(𝑥) = −
𝑔

𝑙
cos 𝑥; ℎ = −

𝑔

𝑙
cos 𝑥  

 

(9) теңдеулерімен берілген фазалық траекториялар теңдеуін келесі 

түрде түрлендіріп жазуға болады, яғни: 

 
𝑦2

2
=

𝑔

𝑙
[1 − 2𝑠𝑖𝑛2 𝑥

2
− (1 − 2𝑠𝑖𝑛2 𝑥0

2
)]  

 
𝑦2

2
=

𝑔

𝑙
(2𝑠𝑖𝑛2 𝑥0

2
− 2𝑠𝑖𝑛2 𝑥

2
) =

2𝑔

𝑙
(𝑠𝑖𝑛2 𝑥0

2
− 𝑠𝑖𝑛2 𝑥

2
)  

 

Маятниктің толық тербелісінің периодын (9) формуладан ала аламыз, 

егер мұндағы: 

 

ℎ = −
𝑔

𝑙
cos 𝑥0, 𝐸(𝑥) = −

𝑔

𝑙
cos 𝑥, 𝛼 = −𝑥0, 𝛽 = 𝑥0  

 

𝑇 = 2 ∫
𝑑𝑥

√
𝑔

𝑙
(𝑠𝑖𝑛2𝑥0

2
−𝑠𝑖𝑛2𝑥

2
) 

            
𝑥0

0
         (10) 

 

(10) интегралы эллипстік интегралға жататындықтан келесі белгілеулер 

кіргізейік: 

 

sin
𝑥

2
= 𝑢, sin

𝑥0

2
= 𝑘𝑢.  

 

Онда стандарттық формаға келтірейік (10) теңдеуі келесі түрге келеді 

[6]. 

 

𝑇 = 4√
𝑙

𝑔
∫

𝑑𝑥

√(1−𝑢2)(1−𝑘2𝑢2)

1

0
  

 

Маятник тербелісінің сызықтық теорияында, яғни тригонометриялық 

sin
𝑥

2
≈

𝑥

2
, sin

𝑥0

2
≈

𝑥0

2
 деп сызықтандырсақ, онда (10) формуласынан бастапқы 

периодты аламыз. 

 

𝑇 = 2 ∫
𝑑𝑥

√𝑙

√𝑔
∗√𝑥0

2

4
−

𝑥2

4

= 2 ∫
2√𝑙𝑑𝑥

√𝑔√𝑥0
2−𝑥2

= 4
√𝑙

√𝑔
∫

𝑑𝑥

√𝑥0
2−𝑥2

=
𝑥0

0

𝑥0

0

𝑥0

0

4√𝑙

√𝑔
𝑎𝑟𝑐𝑠𝑖𝑛

𝑥

𝑥0
|

𝑥0

𝑥
= 4

√𝑙

√𝑔
(𝑎𝑟𝑐𝑠𝑖𝑛1 − 𝑎𝑟𝑐𝑠𝑖𝑛0) =

4√𝑙

√𝑔
∗

𝜋

2
= 2𝜋√

𝑙

𝑔
    

 

Зерттеу шарттары мен әдістері. Сызықты тербелістің периоды 𝑥0 

бастапқы шартына тәуелді емес, яғни тербеліс амплитудасынан тәуелді емес 
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деген сөз. Ал, сызықсыз тербелістер теориясында тербеліс периоды 

амплитудан көп тәуелді болып келеді. Бұл тәуелділікті (10) өрнегіндегі 

эллипстік интегралды k дәрежесі бойынша жіктеу арқылы көрсетуге болады 

[7]. 

 

𝑇 = 2𝜋√
𝑙

𝑔
[1 + (

1

2
)2𝑘2 + (

3

8
)2𝑘4 + ⋯ ]  

 

немесе 

 

𝜏 = 2𝜋√
𝑙

𝑔
[1 + (

1

2
)2𝑠𝑖𝑛2 𝑥0

2
+ (

3

8
)2𝑠𝑖𝑛4 𝑥0

2
+ ⋯ ]       (11) 

 

Бұл жіктеуден бастапқы екі мүшесінен шектеліп, 

 

𝑠𝑖𝑛2 𝑥0

2
≈

𝑥0
2

4
  

 

деп алсақ, период үшін түзетілген жуықтау формуланы аламыз 

 

𝑇 = 2𝜋√
𝑙

𝑔
(1 +

𝑥0
2

16
)  

 

Мысалы бастапқы ауытқу 𝑥0 = 300 деп алып көрейік, онда соңғы 

формула бойынша  

 

𝑇 = 2𝜋√
𝑙

𝑔
(1 + 0,014) = 𝑇0(1 + 0,014) = 1,014𝑇0  

 

Көріп тұрғанымыздай, жоғарыдағы түзетудің тербеліс периодына онша 

әсерін тигізбейтінін көріп тұрмыз. 

Жүйе қозғалысының фазалық суретін алу үшін, жалпы теория бойынша 

(z,x) жазықтығында энергетикалық баланс қисықтарын тұрғызамыз (2-сурет) 

 

𝑧 = −
𝑔

𝑙
cos 𝑥  

 

Суреттен көрініп тұрғандай 𝑥 = 0, ±2𝜋, ±4𝜋 … нүктелерде оқшаланған 

минимумы болатын косинусоида. Ал 𝑥 = ±𝜋, ±3𝜋, … нүктелерінде 

максимумы болады [8]. 

Жүйенің бастапқы толық энергия қоры бастапқы ауытқулармен 

анықталады және ол келесі шамаға тең 

 

ℎ0 = −
𝑔

𝑙
cos 𝑥0  

 

фазалық суретке қарап, келесі тұжырымдар жасайық. 
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Сурет 2. Маятник тербелісінің фазалық суреті 

 

Маятниктің ұзындығы l, массасы m-ге тең біртекті жұқа стерженнен 

және массасы m1 тең болатын A жүгінен тұрады (3-сурет).  
 

 
 

Сурет 3. Физикалық маятниктің схемасы 

 

Стерженге оның жоғарғы шегінен h аралықта c қатаңдық 

коэффициенттерімен бекітілген қарама-қарсы екі пружина орналасқан. 

Мақсат маятниктің еркін тербелісінің кіші периоды мен циклдік жиілігін табу 

керек. 

Қарастырылып отырған механикалық жүйенің еркіндік дәрежесі бірге 

тең. Жалпыланған координаттық жүйе ретінде 𝜑 бұрышын алып, маятниктің 

вертикаль осьтерін белгілейміз. Жүйе ауырлық және серпімділік күштердің 

ықпалында болады [9]. 

Тербеліс маятнигінің математикалық моделін өрнектейтін 

дифференциалдық теңдеуін алу үшін, консервативтік жүйе формасындағы 

екінші ретті Лагранж формуласын қолданамыз [1]:  

 
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝜑
) −

𝜕𝑇

𝜕𝜑
= −

𝜕П

𝜕𝜑
   

 

Жүйенің кинетикалық энергиясын Ox осінің бойымен айналатын және T 

кинетикалық энергиясымен A жүгінің T1 стерженнің кинетикалық 

энергиясының қосындысы ретінде анықтаймыз [10]. 

Формула бойынша 

 

𝑇1 =
1

2
𝐽𝑥𝜔̅2  

 

Стерженнің момент инерциясының мәнін қойып, мынаны аламыз:  

 

𝑇1 =
1

2
∙

1

3
𝑚𝑙2𝜔̅2 =

1

6
𝑚𝑙2𝜑2  
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A  жүгінің кинетикалық энергиясы  

 

𝑇11 =
𝑚1𝑣𝐴

2

2
=

1

2
𝑚1𝑙2𝜔̅2 =

1

2
𝑚𝑙2𝜑2  

 

Жүйенің кинетикалық  энергиясы 

 

𝑇11 = 𝑇1𝑇11 =
1

6
(𝑚 + 3𝑚1)𝑙2𝜑2, 

 

бұдан  

 
𝜕𝑇

𝜕𝜑
= 0  

 
𝜕𝑇

𝜕𝜑
=

1

3
(𝑚 + 3𝑚1)𝑙2𝜑

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝜑
) =

1

3
(𝑚 + 3𝑚1)𝑙2𝜑       (12) 

 

Потенциалдық энергияның қосындысы ПЕ потенциалдық энергияның 

қосындысы бола алатын 𝜑 кіші бұрышының тік жағдайында ауытқитын, 

сәйкесінше, ауырлық  және серпімділік күштерімен әсерлесетін маятниктің 

потенциалдық энергиясын анықтаймыз. Маятниктің потенциалдық энергиясы 

тік жағдайда нөлге тең [11].  

Маятниктің 𝜑 бұрышына айналуы кезінде оның бөліктері ауырлық 

центрінен жоғарғы қозғалысы алынады:  

 

ℎ𝑐 =
𝑙

2
−

𝑙

2
cos 𝜑 =

1

2
(1 − cos 𝜑)  

 

ℎ𝐴 =
𝑙

2
− 𝑙 cos 𝜑 = 𝑙(1 − cos 𝜑)  

 

П1 потенциалдық энергиясы 𝜑 бұрышына айналуы келесі формуламен 

анықталады: 

 

П1 = 𝐺ℎ𝑐+𝐺1ℎ𝐴 = 𝑚𝑔
1

2
(1 − cos 𝜑) + 𝑚1𝑔𝑙(1 − cos 𝜑)  

 

Маятниктің 𝜑 бұрышына айналуы кезінде бір пружинасы қысқарады, 

ал басқасы у мәнінде созылады және бірінші ретті кіші мәнге тең болады: 

 

𝑦 = ℎ sin 𝜑 , П11 =
2𝑐𝑦2

2
= 𝑐ℎ2 sin2 𝜑  

 

П1 = (
𝑚𝑔𝑙

2
+ 𝑚1𝑔𝑙) (1 − cos 𝜑); 1 − cos 𝜑 = 2 sin2 𝜑

2
  

 

П1 = 𝑔𝑙 (
𝑚

2
+ 𝑚1) (1 − cos 𝜑) + 𝑐ℎ2 sin2 𝜑  

 
𝜕П

𝜕𝜑
= 𝑔𝑙 (

𝑚

2
+ 𝑚1) sin 𝜑 + 𝑐ℎ22 sin 𝜑 cos 𝜑 = 𝑔𝑙 (

𝑚

2
+ 𝑚1) (𝜑 −

𝜑3

6
) +

𝑐ℎ22 (𝜑 −
𝜑3

6
) (1 −

𝜑2

2
) = 𝑔𝑙 (

𝑚

2
+ 𝑚1) = 𝑎;  

 



ISSN 2308-9865 
eISSN 2959-7994  

Механика және технологиялар / 
Ғылыми журнал 

2025, №4(90) 

 

393 

 

bch =22  
 

sin 𝜑 = (𝜑 −
𝜑3

6
) ; cos 𝜑 = (1 −

𝜑2

2
)  

 

𝑎 (𝜑 −
𝜑3

6
) + 𝑏 (𝜑 −

𝜑3

6
−

𝜑3

2
+

𝜑5

12
) = 𝑎 (𝜑 −

𝜑3

6
) + 𝑏 (𝜑 −

4𝜑3

6
+

𝜑5

12
) =

(𝑎 + 𝑏)𝜑 − (𝑎 + 𝑏)
5𝜑3

6
+

𝑏

12
𝜑5  

 
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝜑
) −

𝜕𝑇

𝜕𝜑
= −

𝜕П

𝜕𝜑
   

 
1

3
(𝑚 + 3𝑚1)𝑙2𝜑 − [(𝑎 + 𝑏)𝜑 − (

𝑎+𝑏

𝑏
) 𝜑3 +

𝑏

12
𝜑5] = 0  

 

hy = . 
 

П11 потенциалдық энергиясы P пружина реакциясының жалпы жұмысы 

маятниктің тіке қозғалатындығын (нөлдік) анықтайды [12]. 

Формула бойынша  
 

П11 = 2
𝑐𝑦2

2
=  𝑐ℎ2𝜑2, 

 

Жүйенің барлық потенциалдық энергиясы 

 

П1 = П1 + П11 = 𝑔𝑙 (
𝑚

2
+ 𝑚1) (1 − cos 𝜑) + 𝑐ℎ2𝜑2  

 

Жүйенің екінші ретті кіші мәнімен шектеліп, мынаны аламыз:  

 

1 − cos 𝜑 = 2 sin2 𝜑

2
≈ 2 (

𝜑2

2
) =

𝜑2

2
  

 

одан  

 

П =
𝑔𝑙

2
(

𝑚

2
+ 𝑚1) + 𝜑2 + 𝑐ℎ2𝜑2 = [

𝑔𝑙

2
(

𝑚

2
+ 𝑚1) + 𝑐ℎ2] 𝜑2. 

 

𝜑 координатасын жалпылай отырып, П туындысын табамыз:  

 
𝜕П

𝜕𝜑
= [𝑔𝑙 (

𝑚

2
+ 𝑚1) + 2𝑐ℎ2] 𝜑  

 

Табылған өрнектерді Лагранждың екінші ретті  теңдеуінің орнына 

қойып, келесі өрнекті аламыз: 

 
1

3
(𝑚 + 3𝑚1)𝑙2𝜑 = − [𝑔𝑙 (

𝑚

2
+ 𝑚1) + 2𝑐ℎ2] 𝜑  

 

немесе 

 

𝜑̈ +
3[𝑔𝑙(

𝑚

2
+𝑚1)+2𝑐ℎ2]

(𝑚+3𝑚1)𝑙2 𝜑 = 0  



Механика 
Ә.Т. Жақаш,  

С.Д. Салыбаев, Э.Б. Саткожаева 
Б.386-397 

 

394 

  

𝜑̈ + 𝑘2𝜑 = 0 түрінде алынған теңдеу жүйенің кіші еркіндік тербелісінің 

дифференциалдық теңдеуі болып табылады. Сол себепті қарастырылған 

жүйедегі еркіндік тербелісінің циклдік жиілігі мынадай:  

 

𝑘 =
1

𝑙
√

3[𝑔𝑙(
𝑚

2
+𝑚1)+2𝑐ℎ2]

(𝑚+3𝑚1)
  

 

Бұл жүйенің еркіндік тербелісінің периоды 

 

𝑇 =
2𝜋

𝑘
= 2𝜋𝑙√

(𝑚+3𝑚1)

3[𝑔𝑙(
𝑚

2
+𝑚1)+2𝑐ℎ2]

   

 

Зерттеу нәтижелері және оларды талқылау. Жүйенің жұмыс істеу 

процессін бақылау және қажетті параметрлерін анықтау үшін заманауи 

есептеу әдістері (Delphi 17) негізінде бағдарламалар құрылды. Есептеудің 

нәтижелерін төмендегі суреттерден көруге болады: 
 

 
 

Сурет 4. Маятниктің жұмыс істеу процесінің компьютерлік моделі 

 

 
 

Сурет 5. Маятниктің қозғалыс заңдылықтарын анықтайтын графиктер 
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Бұл бағдарламалар негізінде механикалық жүйенің параметрлерін 

әртүрлі вариацияда табуға болады. 

Қорытынды. Жұмыста физикалық маятниктердің  қарапайым түрлері 

және  олардың    математикалық моделі, ақырлы амплитудада жұмыс істейтін 

физикалық маятниктің тербелісі, серпімді тиектері бар механизмдер 

қозғалысына байланысты келесі нәтижелер алынды.  

Жұмыста физикалық маятниктердің  қарапайым түрлері және олардың 

математикалық моделі параллель және тізбектей жалғасқан тиектер мен 

серпімді элементтері қарастырылып, олардың келтірілген қатаңдық 

коэффициенттері потенциалдық энергиялардың теңдігінен анықталды. 

Кейбір жағдайлар үшін қатаңдық коэффициенттерінің орнына, оларға кері 

шама тарқату коэффициенттерін анықтау қарастырылды. Сызықты серпімді 

тиекті екі массалы динамикалық моделдің қозғалысының математикалық 

моделі құрылып, оның шешу әдістері келтірілді. Күрделі байланыстардағы 

физикалық маятниктер, кедергілі ортадағы сызықты серпімді тиектен 

тұратын механизмнің тербелісі қарастырылды. Бұл жағдайда ортаның 

кедергісін өрнектейтін n коэффициентінің әсерін байқаймыз. Динамикалық 

коэффициенттің ең үлкен мәні p = k айналасында болатыны дәлелденді. n- 

нің әртүрлі мәндерінде сәйкес резонанстық қисықтың графигі алынды. 

Сонымен қатар серпімді тиектің сызықсыз болғандағы тербеліс қозғалыс 

заңдылықтары қарастырылды. Амплитудалық- жиіліктік сипаттамалар 

графиктері алынды. 
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МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДВИЖЕНИЯ ФИЗИЧЕСКИХ МАЯТНИКОВ  

И МЕТОДЫ РЕШЕНИЯ 
 

Аннотация. Модель движения физического маятника в настоящее время 
имеет большое значение не только в области физики, но и в современной технике и 
науке. Основные области применения модели движения маятника: в системах 
точного измерения времени, то есть ранее использовавшихся только в механических 
часах, сегодня принцип маятника используется для обеспечения устойчивости 
резонаторных систем, синхронных генераторов и датчиков. В машиностроении и 
строительстве он широко применяется для повышения сейсмостойкости зданий, при 
расчёте колебаний мостов и башен, а также для оценки динамического равновесия 
подвесных устройств и механизмов. Кроме того, в сейсмологии и геофизике 
колебания маятника позволяют регистрировать движение земной коры во время 
землетрясения, то есть позволяют проводить точный анализ сейсмологических 
данных и вычислять энергию землетрясений. Поэтому анализ работы физических 
маятников, определение области их применения и математическое исследование 
типов движения являются актуальными задачами. 

Ключевые слова: колебания, физический маятник, амплитуда, резонанс, 
период, частота, потенциальная энергия. 
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MATHEMATICAL MODEL OF MOTION OF PHYSICAL PENDULUMS  

AND SOLUTION METHODS 
 

Abstract. The model of physical pendulum motion is currently of great importance 
not only in physics but also in modern engineering and science. The main areas of 
application of the pendulum model are: in precision timekeeping systems, previously used 
only in mechanical clocks, the pendulum principle is now used to ensure the stability of 
resonator systems, synchronous generators, and sensors. In mechanical engineering and 
construction, it is widely used to improve the seismic resistance of buildings, to calculate 
the vibrations of bridges and towers, and to assess the dynamic equilibrium of suspension 
devices and mechanisms. Furthermore, in seismology and geophysics, pendulum 
oscillations allow for the recording of crustal movement during an earthquake, thereby 
enabling the precise analysis of seismological data and the calculation of earthquake 
energy. Therefore, the analysis of physical pendulums, the determination of their 
application areas, and the mathematical study of their types of motion are pressing 
problems. 

Keywords: oscillations, physical pendulum, amplitude, resonance, period, 
frequency, potential energy. 
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