МРНТИ 61.01.21: 70.25.17

А.А. Вердиев¹ – основной автор, Б.Г. Мехтиева², М.С. Зарбалиев³

^{1,2,3}Канд. техн. наук, доцент

ORCID

¹https://orcid.org/0009-0005-0502-345X ²https://orcid.org/0000-0001-6867-7198 ³https://orcid.org/0000-0002-4699-1335

 1,2 Научно-исследовательский институт воды и мелиорации,

г. Баку, Азербайджанская Республика

 3 Азербайджанский архитектурно-строительный университет,

г. Баку, Азербайджанская Республика

@

¹verdiev@gmail.com

https://doi.org/10.55956/YNJL4632

АНАЛИЗ ХИМИКО-ЭКОЛОГИЧЕСКИХ ИЗМЕНЕНИЙ В УСЛОВИЯХ АНТРОПОГЕННОГО ВОЗДЕЙСТВИЯ НА ЛЕНКОРАНСКУЮ НИЗМЕННОСТЬ АЗЕРБАЙДЖАНСКОЙ РЕСПУБЛИКИ

Аннотация. В статье представлен анализ химико-экологических изменений природно-хозяйственной среды Ленкоранской низменности Азербайджанской Республики под влиянием антропогенных факторов. Особое внимание уделено трансформациям физиономических компонентов ландшафта (растительность, водоемы, мелиоративные системы) и десипиентных элементов (почвенногидрогеологические условия, литогенная основа). Проведен сравнительный анализ с регионами Центральной Азии, выявлены различия в водообеспеченности и методах ирригационного управления. На основе данных дистанционного зондирования и полевых исследований оценено влияние технического гидромелиоративных систем на химическое состояние почв и вод. Результаты подтверждают необходимость модернизации инфраструктуры для стабилизации экологической обстановки и повышения устойчивости агроландшафтов.

Ключевые слова: химико-экологический анализ, мелиорация, антропогенное воздействие, дистанционное зондирование, Ленкоранская низменность.

Вердиев А.А. Анализ химико-экологических изменений в условиях антропогенного воздействия на Ленкоранскую низменность Азербайджанской Республики [Текст] / А.А. Вердиев, Б.Г. Мехтиева, М.С. Зарбалиев //Механика и технологии / Научный журнал. -2025. -N2(88). -C.119-128. https://doi.org/10.55956/YNJL4632

Введение. Ленкоранская низменность представляет собой уникальный природно-хозяйственный регион Азербайджанской Республики, характеризующийся высокой обеспеченностью водными ресурсами, близким залеганием грунтовых вод И активным сельскохозяйственным использованием. В условиях усиливающегося антропогенного воздействия, в том числе в результате эксплуатации гидромелиоративных систем, в регионе наблюдаются значительные химико-экологические затрагивающие почвенно-гидрологические и геологические компоненты среды [1-5].

Основное назначение гидромелиоративных систем — обеспечение устойчивого водоснабжения и регулирование водного режима в агроландшафтах. Однако нарушения в их функционировании могут приводить к деградации почв, засолению, заболачиванию и ухудшению качества водных ресурсов. В Ленкорани, в отличие от регионов Центральной Азии, водный баланс преимущественно поддерживается за счёт атмосферных осадков, что снижает зависимость от искусственного орошения. Тем не менее, изменение климата, рост температуры и нестабильность осадков усиливают нагрузку на существующую мелиоративную инфраструктуру.

В регионе функционирует разветвлённая сеть оросительных и дренажных каналов, общая протяжённость которых превышает 3600 км. Наряду с этим, построены водохранилища (Ханбуланчай, Вилешчай, Бабасар и др.), играющие ключевую роль в регулировании водоснабжения. Однако техническое состояние многих сооружений не соответствует современным требованиям, что снижает их эффективность и увеличивает экологические риски [6].

Гидромелиоративные системы активно взаимодействуют с геологической средой, и любые отклонения от проектных параметров могут вызывать негативные изменения как в инженерных конструкциях, так и в окружающей среде [7-10]. В частности, при нерациональном орошении возможно вторичное засоление почв и загрязнение грунтовых вод, что требует комплексного мониторинга и оценки.

Условия и методы исследования. С учётом вышеизложенного, целью настоящего исследования является анализ химико-экологических изменений, происходящих в Ленкоранской низменности под влиянием антропогенных факторов, с акцентом на оценку технического состояния гидромелиоративных систем и их воздействия на природную среду. В работе применяются методы дистанционного зондирования Земли, полевые наблюдения, химический анализ проб почв и воды, а также оценка физикомеханических свойств грунтов [11-15].

Одним из наиболее информативных инструментов дистанционного мониторинга состояния растительности является нормализованный вегетационный индекс (NDVI, Normalized Difference Vegetation Index). Он основан на различии в отражательной способности растительности в красном (0,6-0,7 мкм) и ближнем инфракрасном (0,7-1,0 мкм) диапазонах спектра. Здоровая растительность активно поглощает красный свет и интенсивно отражает инфракрасное излучение, что позволяет количественно оценивать плотность и состояние зеленой массы.

Формула расчета:

$$NDVI = \frac{NIR - RED}{NIR + RED} \tag{1}$$

где: NIR – отражательная способность в ближнем инфракрасном диапазоне; RED – отражательная способность в красном диапазоне.

Значения NDVI варьируются от -1 до +1. Отрицательные значения соответствуют водным объектам, значения выше 0,1 указывают на наличие растительности, а более высокие значения - на густую зеленую массу. На основе NDVI территория Ленкоранской низменности была классифицирована по пяти типам ландшафтного покрова: водные объекты и голая почва,

кустарники и пастбища, редкие деревья и кустарники, густая растительность, густой лесной покров [16-18].

Для повышения точности анализа использовался также индекс SAVI (Soil Adjusted Vegetation Index), учитывающий влияние почвенного фона. Он особенно полезен при анализе участков с разреженной растительностью:

$$SAVI = \frac{NIR - RED}{NIR + RED + L} \cdot (1 + L) \tag{2}$$

где, L- коэффициент, зависящий от плотности растительного покрова (при густой растительности $L\approx 0$, при разреженной - $L\approx 1$).

В качестве исходных данных использовались спутниковые снимки Landsat-5, Landsat-8 и Landsat-9 за 2013, 2019 и 2024 годы, полученные с портала USGS EarthExplorer. На основе расчетов NDVI и SAVI были построены тематические карты и выполнена классификация ландшафтных компонентов. Результаты представлены в таблице 1.

Таблица 1 Динамика изменения компонентов ландшафта Ленкоранской низменности (2013-2024 гг.)

(2013-202-111.)								
№	Классы ландшафта	2013 г.	2019 г.	2024 г.	Изменение (2013-2024),			
					KB. KM			
1	Водные объекты и голая земля	118,53	125,46	173,89	+55,36			
2	Кустарники и пастбища	440,53	618,32	581,48	+140,95			
3	Редкие деревья и кустарники	551,38	596,59	526,32	-25,06			
4	Густая растительность	574,46	539,55	540,59	-33,87			
5	Густой лесной покров	926,94	731,94	789,58	-137,36			

Сравнительный анализ спутниковых данных за 2013 и 2024 годы выявил существенные изменения в структуре растительного покрова, особенно в районе Ленкоранчайского магистрального канала. Отмечено увеличение площади пастбищ и кустарников, а также снижение площади густого лесного покрова. Эти изменения могут быть связаны как с климатическими факторами, так и с техногенным воздействием, включая эксплуатацию мелиоративных систем.

Для наглядного представления результатов были построены гистограмма и график, отражающие динамику изменения площадей по каждому классу ландшафта.

На рисунках 1 и 2, в виде гистограммы и графика соответственно, отражены изменения площади, занимаемой каждым классом покрытия в районе исследования по данным 2013-2024 годов.

Объектом исследования являются магистральные каналы — Ханбуланчайский Левобережный, Башарычайский и Ленкоранчайский, а также коллекторно-дренажные сети, расположенные на территории Ленкоранской низменности. Исследование охватывает оценку технического состояния каналов, включая бетонное покрытие, заиление русел, развитие растительности и наличие разрушений.

Рис. 1. Гистограмма изменений, произошедших в классах покрытия в регионе за 2013-2024 годы

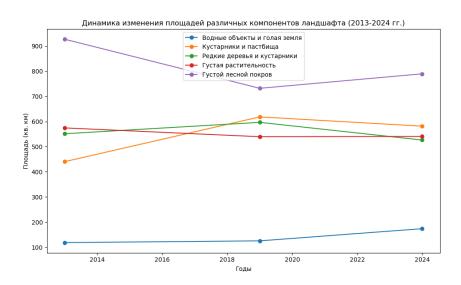


Рис.2. График изменений, произошедших в классах покрытия в регионе за 2013-2024 годы

Каналы, введённые в эксплуатацию с 1976 года, подвергались регулярному обслуживанию, однако на отдельных участках наблюдаются признаки деградации: зарастающие мхом и водолюбивыми растениями поверхности, отсутствие защитных полос, а также заиление, вызванное поступлением поверхностных вод и твёрдых частиц. Эти процессы свидетельствуют о недостаточной защите и антропогенном вмешательстве вдоль всей трассы каналов.

Ханбуланчайском Левобережном канале обрушений зафиксировано, тогда как в Ленкоранчайском канале частота разрушений составила 21,3% от общего числа зарегистрированных случаев. Основные включают трещины, раскалывание бетонного соскальзывание и падение элементов конструкции, особенно вблизи дюкеров. изменения обусловлены набуханием грунта И нарушением геотехнической устойчивости.

Для визуализации состояния каналов использовались 3D-модели и фотоматериалы, отражающие характер разрушений и степень техногенного воздействия (рис. 3).

Рис. 3. Вид Ленкоранчайского канала и фотографии разрушения его конструкции

Результаты исследований. Для оценки химико-экологических изменений, происходящих в условиях антропогенного воздействия на Ленкоранскую низменность, использовались данные стационарных режимно-наблюдательных наблюдений за гидрогеолого-мелиоративным состоянием орошаемых земель. Работы проводились в соответствии с утверждённой методикой [19-22] под руководством Управления по контролю за использованием и охраной вод и гидрогеолого-мелиоративной службы (УКИОВГМС).

На территории Ленкоранского, Астаринского и Масаллинского районов было размещено в общей сложности 242 наблюдательные скважины, обеспечивающие мониторинг состояния почв и грунтовых вод. Распределение скважин и охваченных площадей представлено в таблице 2.

Таблица 2
Характеристики дренажной сети и режимных наблюдений на орошаемых землях Ленкоранской низменности (по состоянию на 01.01.2022)

Район	Общая площадь	Под	Число	Обеспечение				
	орошаемых	контролем,	наблюдательных	картами				
	земель, га	га	скважин, шт.	засоления, га				
Масаллинский	55693	9886	81	9886				
Ленкоранский	45193	8728	79	8728				
Астаринский	38158	4519	21	4519				
Итого	139 044	23 133	242	23 133				

По результатам наблюдений, на исследуемых участках признаков засоления почв не выявлено, что свидетельствует о стабильном

мелиоративном состоянии на момент обследования. Эти данные легли в основу дальнейшего анализа химического состава почв и вод, а также оценки эффективности функционирования мелиоративной инфраструктуры.

Наиболее значимыми факторами, осложняющими эксплуатацию гидромелиоративных систем Ленкоранской низменности, являются разрушение и растрескивание бетонного покрытия каналов, заиление русел, а также развитие водолюбивой растительности в швах и на откосах. Особенно выражено заиление в Ханбуланчайском Левобережном канале, что связано с отсутствием или недостаточной охраной полосы отвода.

Полевые исследования показали, что коллекторно-дренажная сеть в целом находится в рабочем состоянии, однако требует проведения ремонтных мероприятий, включая очистку от ила и растительности. Анализ гидрогеолого-мелиоративного состояния орошаемых земель, находящихся под наблюдением, подтвердил отсутствие признаков засоления, что свидетельствует о стабильности мелиоративного режима на момент обследования.

На основе анализа фондовых материалов, литературных источников, спутниковых данных и результатов полевых исследований, проведённых в разные годы, сформулированы следующие выводы и рекомендации:

- 1. Геологическое строение, гидрогеологические и инженерногеологические условия, а также техногенное воздействие способствуют развитию экзогенно-геодинамических процессов (ЭГП), что требует постоянного мониторинга.
- 2. Основной эксплуатационный дефект заиление каналов и рост водолюбивой растительности является системной проблемой, характерной для большинства исследованных объектов.
- 3. Гидротехнические сооружения, входящие в состав мелиоративных систем, нуждаются в ремонте и восстановлении эксплуатационных характеристик.
- 4. Изучение состояния гидромелиоративных сооружений в системе «речной бассейн водохранилище оросительная сеть» имеет важное научное и практическое значение для обеспечения рационального водопользования и охраны водных ресурсов.

Заключение. проблем, Одной ИЗ ключевых влияющих эффективность эксплуатации оросительных каналов Ленкоранской низменности, являются фильтрационные потери воды, вызванные дефектами бетонного покрытия, нарушением герметичности швов и развитием Эти процессы водолюбивой растительности. не только снижают водоэффективность, но и способствуют вторичному загрязнению почв и вод, что имеет прямое отношение к химико-экологическому состоянию региона.

С точки зрения химических технологий, особое значение имеет подбор применение современных материалов c улучшенными гидроизоляционными и антикоррозионными свойствами. Использование модифицированных бетонных смесей, полимерных герметиков наноструктурированных добавок позволяет существенно водонепроницаемость конструкций, устойчивость к агрессивным средам и долговечность каналов.

Кроме того, химико-технологические методы могут быть применены для:

 очистки каналов от заиливания с использованием реагентов, разрушающих органические отложения;

- обработки швов и стыков герметизирующими составами на основе силикатных или эпоксидных смол;
- мониторинга качества воды с помощью экспресс-методов химического анализа (например, фотометрии, ионометрии), что позволяет оперативно выявлять загрязнение, связанное с разрушением каналов.

Учитывая: низкий расход воды (менее 10 м³/с); отсутствие охранных зон; техногенное вмешательство и сложные грунтовые условия, целесообразно рассмотреть реконструкцию каналов с переходом на закрытые трубопроводные системы, выполненные из химически стойких материалов (например, ПВХ, ПЭ или стеклопластика). Это позволит минимизировать потери воды, снизить риски загрязнения и повысить экологическую устойчивость мелиоративной инфраструктуры.

Список литературы

- 1. Безднина, С.Я. Водно-экологические аспекты устойчивого развития мелиорации [Текст] / С.Я. Безднина // Мелиорация: этапы и перспективы развития: материалы междунар. науч.-практ. конф. М., 2006. С. 35-46.
- 2. Широкова, Ю.И. Опыт, задачи и перспективы улучшения мелиоративного контроля орошаемых земель [Текст] / Ю.И. Широкова, А.К. Чернышев, Н.Ш. Шарафутдинова // Мелиорация: этапы и перспективы развития: материалы междунар. науч.-практ. конф. М., 2006. С. 35-46.
- 3. Ахмедзаде, А.Д. Энциклопедия. Мелиорация и водное хозяйство [Текст] / А.Д. Ахмедзаде, А.Д. Гашимов. Баку: Радиус, 2016. 632 с.
- 4. Галкин, А.Н. Об управлении литотехническими системами и его инженерногеологическом обосновании [Текст] / А.Н. Галкин, В.Г. Жогло // Актуальные вопросы инженерной геологии, гидрогеологии и рационального недропользования: материалы IX Университетских геологических чтений. Минск, 2015. С. 19-21.
- 5. Соловьев, В.О. Экологическая геология [Текст] / В.О. Соловьев, И.М. Фык, В.Н. Прибылова. Харьков, 2012. 160 с.
- 6. Бондарик, Г.К. Методика инженерно-геологических исследований [Текст] / Г.К. Бондарик. М.: Недра, 1985. 335 с.
- 7. Huai W.X., Zang J., Wang W.J., Katul G.G. Turbulence structure in open channel flow with partially covered artificial emergent vegetation // Journal of Hydrology. 2019. Vol. 573. P. 180-193.
- Косиченко, Ю.М. Гидравлическая эффективность оросительных каналов при эксплуатации [Текст] / Ю.М. Косиченко, О.А. Баев // Вестник МГСУ. – 2020. – Т. 15. – № 8. – С. 1147-1162.
- 9. Вердиев, А.А. Оценка ожидаемых изменений по проектным параметрам магистральных каналов земляного русла с точки зрения надежности [Текст] / А.А. Вердиев // Бюллетень науки и практики. 2022. Т. 8. № 11.
- 10. Губер, К.В. Технология орошения деградированных земель [Текст] / К.В. Губер // Мелиорация: этапы и перспективы развития: материалы междунар. науч.-практ. конф. М., 2006. С. 35-46.
- 11. ВСН 33-2.1.05-90. Гидромелиоративные системы и сооружения. Гидрогеологические и инженерно-геологические изыскания [Текст]. – 2014.
- 12. Мамедов, Г.Ш. Методическое указание по составлению интерактивных электронных карт экологической оценки земель и земель на основе географических информационных систем [Текст] / Г.Ш. Мамедов, А.Т. Алиев, Л.С. Касымов. Баку: Наука, 2018. 80 с.
- 13. Шовенгердт Р.А. Дистанционное зондирование. Модели и методы обработки изображений [Текст] / Р.А. Шовенгердт. М.: Техносфера, 2010. 560 с.
- 14. Аринушкина, Е.В. Руководство по химическому анализу почв [Текст] / Е.В. Аринушкина. М.: Изд-во МГУ, 1970. 488 с.
- 15. Мамедов, Г.Ш. Основы инженерной геологии [Текст]: учебник / Г.Ш. Мамедов, А.С. Гашимов, А.А. Вердиев. Баку: Наука, 2012. 139-223 с.

- 16. Kerle N., Janssen L., Huurneman G. Principles of Remote Sensing. ITC Educational Textbook Series, 2001. 540 p.
- 17. Wu T., Luo J., Zhou Y., et al. Geo-Object-Based Land Cover Map Update for High-Spatial-Resolution Remote Sensing Images via Change Detection and Label Transfer // Remote Sensing. 2020. Vol. 12. P. 174.
- 18. Konecny G. Geoinformation. Remote Sensing, Photogrammetry, and Geographic Information Systems. CRC Press, 2014. 452 p.
- Gilabert M.A., Gonzilez-Piqueras J., Martinez B. Theory and Applications of Vegetation Indices. – [Electronic resource]. – Access mode: https://www.researchgate.net/publication/288925469.
- 20. Кадастр гидрогеолого-мелиоративного состояния орошаемых земель в Азербайджанской Республике на 01 января 2022 года [Текст]. Баку: УКИОВГМС, 2022.
- 21. Мамедов, Р.Н. Инструкция по организации полива, эксплуатации коллекторнодренажных сетей в хозяйствах и оценке гидрогеолого-мелиоративного состояния орошаемых полей [Текст] / Р.Н. Мамедов, М.Я. Асадов, Х.Ф. Джафаров, А.Д. Гашимов. Баку: Араз, 2002. 86 с.
- 22. Вуглинский, В.С. Водные ресурсы и водный баланс крупных водохранилищ СССР [Текст] / В.С. Вуглинский. Л.: Гидрометеоиздат, 1991. 222 с.

Работа выполнена в рамках программно-целевого финансирования по научным, научно-техническим программам на 2023-2025 годы МНиВО РК BR21882415 «Разработка технологии безопасной утилизации сточных вод для полива кормовых культур и древесных насаждений в условиях дефицита воды в Кызылординской области».

Материал поступил в редакцию 20.06.25, принят 27.06.25.

А.А. Вердиев¹, Б.Г. Мехтиева¹, М.С. Зарбалиев²

¹Су және мелиорация ғылыми-зерттеу институты, Баку қ., Әзербайжан Республикасы ²Әзербайжан сәулет-құрылыс университеті, Баку қ., Әзербайжан Республикасы

ӘЗЕРБАЙЖАН РЕСПУБЛИКАСЫНЫҢ ЛЕНКОРАН ЖАЗЫҒЫНДА АДАМ ӘРЕКЕТІНІҢ ӘСЕРІНДЕГІ ХИМИЯЛЫҚ-ЭКОЛОГИЯЛЫҚ ӨЗГЕРІСТЕРДІ ТАЛДАУ

Аңдатпа. Мақалада Әзербайжан Республикасының Ленкоран жазығындағы табиғи-шаруашылық ортада антропогендік факторлардың әсерінен болған химиялық-экологиялық өзгерістерге талдау жасалған. Зерттеу ландшафттын физиономиялық компоненттері (өсімдіктер жамылғысы, айдындары, мелиорациялық жүйелер) мен десипиенттік элементтерінің (топырақгидрогеологиялық жағдайлар, литогендік негіз) трансформациясына ерекше назар аударылды. Орталық Азия аймақтарымен салыстырмалы талдау жүргізіліп, су ресурстарымен қамтамасыз етілуі мен ирригациялық басқару әдістеріндегі айырмашылықтар анықталды. Қашықтықтан зондтау деректері мен далалық зерттеулер негізінде гидромелиорациялық жүйелердің техникалық жағдайының топырақ пен су құрамына әсері бағаланды. Зерттеу нәтижелері экологиялық жағдайды тұрақтандыру және агроландшафтардың тұрақтылығын мақсатында инфрақұрылымды жаңғыртудың қажеттілігін көрсетеді.

Тірек сөздер: химиялық-экологиялық талдау, мелиорация, антропогендік әсер, қашықтықтан зондтау, Ленкоран жазығы.

A.A. Verdiyev¹, B.G. Mekhtiyeva¹, M.S. Zarbaliev²

¹Scientific Research Institute of Water and Reclamation, Baku, Republic of Azerbaijan ²Azerbaijan University of Architecture and Construction, Baku, Republic of Azerbaijan

ANALYSIS OF CHEMICAL AND ECOLOGICAL CHANGES UNDER ANTHROPOGENIC IMPACT IN THE LANKARAN LOWLAND OF THE REPUBLIC OF AZERBAIJAN

Abstract. This article presents an analysis of chemical and ecological changes in the natural and economic environment of the Lankaran Lowland of the Republic of Azerbaijan under the influence of anthropogenic factors. Special attention is given to the transformation of physiognomic components of the landscape (vegetation cover, water bodies, reclamation systems) and recipient elements (soil-hydrogeological conditions, lithogenic base). A comparative analysis with regions of Central Asia was conducted, revealing differences in water availability and irrigation management practices. Based on remote sensing data and field studies, the impact of the technical condition of hydroreclamation systems on the chemical composition of soils and water was assessed. The results confirm the need for infrastructure modernization to stabilize the ecological situation and enhance the sustainability of agro-landscapes.

Keywords: chemical-ecological analysis, reclamation, anthropogenic impact, remote sensing, Lankaran Lowland.

References

- Bezdnina S.Ya. Vodno-ekologicheskie aspekty ustoichivogo razvitiya melioratsii [Water-ecological aspects of sustainable development of land reclamation] // Melioratsiya: etapy i perspektivy razvitiya: materialy mezhdunar. nauch.-proizv. konf [Reclamation: stages and development prospects. Proceedings of the International Scientific and Practical Conference]. – Moscow, 2006. – S. 35-46. [in Russian].
- 2. Shirokova Yu.I., Chernyshyev A.K., Sharafutdinova N.Sh. Opyt, zadachi i perspektivy uluchsheniya meliorativnogo kontrolya oroshaemykh zemel' [Experience, tasks and prospects for improving reclamation control of irrigated lands] // Melioratsiya: etapy i perspektivy razvitiya [Reclamation: stages and development prospects]. Moscow, 2006. P. 35-46. [in Russian].
- 3. Akhmedzade A.D., Gashimov A.D. Entsiklopediya. Melioratsiya i vodnoe khozyaistvo [Encyclopedia. Reclamation and Water Management]. Baku: Radius, 2016. 632 p. [in Russian].
- Galkin A.N., Zhoglo V.G. Ob upravlenii litotekhnicheskimi sistemami i ego inzhenerno-geologicheskom obosnovanii [On management of lithotechnical systems and its engineering-geological justification] // Aktual'nye voprosy inzhenernoi geologii, gidrogeologii i ratsional'nogo nedropol'zovaniya [Topical issues of engineering geology, hydrogeology and rational subsoil use]. Minsk, 2015. P. 19-21. [in Russian].
- 5. Solov'yev V.O., Fyk I.M., Pribylova V.N. Ekologicheskaya geologiya [Ecological Geology]. Kharkiv, 2012. 160 p. [in Russian].
- Bondarik G.K. Metodika inzhenerno-geologicheskikh issledovanii [Methods of Engineering and Geological Research]. – Moscow: Nedra, 1985. – 335 p. [in Russian].
- 7. Huai W.X., Zang J., Wang W.J., Katul G.G. Turbulence structure in open channel flow with partially covered artificial emergent vegetation // Journal of Hydrology. 2019. Vol. 573. P. 180–193. DOI:10.1016/j.jhydrol.2019.03.071.
- 8. Kosichenko Yu.M., Baev O.A. Gidravlicheskaya effektivnost' orositel'nykh kanalov pri ekspluatatsii [Hydraulic efficiency of irrigation canals in operation] // Bulletin of MGSU. 2020. Vol. 15. No. 8. P. 1147-1162. [in Russian].

- 9. Verdiyev A.A. Otsenka ozhidaemykh izmenenii po proektnym parametram magistral'nykh kanalov zemlyanogo rusla s tochki zreniya nadezhnosti [Assessment of expected changes in the design parameters of main earthen canals in terms of reliability] // Bulletin of Science and Practice. 2022. Vol. 8. No. 11. [in Russian].
- Guber K.V. Tekhnologiya orosheniya degradirovannykh zemel' [Technology of irrigation of degraded lands] // Melioratsiya: etapy i perspektivy razvitiya [Reclamation: stages and development prospects]. Moscow, 2006. P. 35-46. [in Russian].
- 11. VSN 33-2.1.05–90. Gidromeliorativnye sistemy i sooruzheniya. Gidrogeologicheskie i inzhenerno-geologicheskie izyskaniya [Hydromeliorative Systems and Structures. Hydrogeological and Engineering-Geological Surveys]. 2014. [in Russian].
- 12. Mamedov G.Sh., Aliyev A.T., Kasymov L.S. Metodicheskoe ukazanie po sostavleniyu interaktivnykh elektronnukh kart ekologicheskoi otsenki zemel' [Guidelines for compiling interactive electronic maps for environmental land assessment]. Baku: Science, 2018. 80 p. [in Russian].
- 13. Shovengerdt R.A. Distantsionnoe zondirovanie. Modeli i metody obrabotki izobrazhenii [Remote Sensing: Models and Image Processing Methods]. Moscow: Technosphere, 2010. 560 p. [in Russian].
- 14. Arinushkina E.V. Rukovodstvo po khimicheskomu analizu pochv [Guide to Chemical Soil Analysis]. Moscow: Izd-vo MGU, 1970. 488 p. [in Russian].
- 15. Mamedov G.Sh., Gashimov A.S., Verdiyev A.A. Osnovy inzhenernoi geologii [Fundamentals of Engineering Geology]: textbook. Baku: Science, 2012. 139-223 p. [in Russian].
- 16. Kerle N., Janssen L., Huurneman G. Principles of Remote Sensing. ITC Educational Textbook Series. 2001. 540 p.
- 17. Wu T., Luo J., Zhou Y., et al. Geo-Object-Based Land Cover Map Update for High-Spatial-Resolution Remote Sensing Images via Change Detection and Label Transfer // Remote Sensing. 2020. Vol. 12. P. 174.
- 18. Konecny G. Geoinformation. Remote Sensing, Photogrammetry, and Geographic Information Systems. CRC Press, 2014. 452 p.
- 19. Gilabert M.A., Gonzilez-Piqueras J., Martinez B. Theory and Applications of Vegetation Indices. [Electronic resource]. Access mode: https://www.researchgate.net/publication/288925469.
- 20. Kadastr gidrogeologo-meliorativnogo sostoyaniya oroshaemykh zemel' v Azerbaydzhanskoi Respublike na 01 yanvarya 2022 goda [Cadastre of hydrogeological and reclamation status of irrigated lands in the Republic of Azerbaijan as of January 1, 2022]. Baku: UKIOVGMS, 2022. [in Russian].
- 21. Mamedov R.N., Asadov M.Ya., Dzhafarov Kh.F., Gashimov A.D. Instruktsiya po organizatsii poliva, ekspluatatsii kollektorno-drenazhnykh setei v khozyaistvakh i otsenke gidrogeologo-meliorativnogo sostoyaniya oroshaemykh polei [Instruction on the organization of irrigation, operation of collector-drainage networks in farms and assessment of the hydrogeological-reclamation state of irrigated fields]. Baku: Araz, 2002. 86 p. [in Russian].
- 22. Vuglinsky V.S. Vodnye resursy i vodnyi balans krupnykh vodokhranilishch SSSR [Water resources and water balance of large reservoirs of the USSR]. Leningrad: Gidrometeoizdat, 1991. 222 p. [in Russian].