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USING CLASSICAL ANALYSIS AND COMPUTER
TECHNOLOGIES TO STUDY POWER-EXPONENTIAL TYPE
EQUATIONS

Abstract. In the present paper basing on properties of the power and the exponential
functions we study power-exponential type equations and establish properties of their roots.
Since such equations are transcendental there is no method to find exact roots. But using
well known methods of classical calculus and tools of the system of analytical calculations
Maple we can establish the boundaries of roots and predict their convergence as the degree
tends to infinity. We also give qualitative and quantitative analysis of the difference
between the power and the exponential functions for large values of the argument and
suggest a convenient formula for approximate but fast calculations. Results of calculations
demonstrated in tables and graphs were obtained using Maple program.
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Introduction. It is well known that for any real a > 1 and 8 > 0 the
exponential function a* will grow much faster than the power function x#, starting
from some (possibly very large) positive value of the variable x. Such a conclusion
follows from the value of the limit lim,._, ; o, a*x# = +o0. However, this fact does
not contain any information about exactly from what values of x the inequality
a*x~F > 1 will be established. We are only sure that this will happen for large
values of x. Here we consider the special case a = f = n only. Obviously, at the
point x= 0 the inequality 1 = n* > x™ = 0 holds for all natural n. The case n = 1
is also obvious. Therefore throughout the text we consider power-exponential type
equation n* = x™ assuming x € R \ {0} and n € N \ {1}. The main results are
contained in the following three theorems.

Theorem 1. The following assertions are hold for n > 2:

(1) If n = 2 then 2* = x2 has exactly three distinct roots x; < 0,x, = 2 and
x3 = 4. In addition, 2¥ < x? for x € (—o,x;) U (2,4) and 2* > x? for x €
(x1,2) U (4, +0).
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(2) If niis even and n > 4 then n* = x™ has exactly three distinct roots x; <
x, < x3 such that x; <0,x, >0 and x; =n. Moreover, n* < x™ for x €
(—00,x1) U (x2,n) and n* > x™ for x € (x1,x,) U (n, +o0) (Fig. 1).
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Fig. 1. The graphs of n* and x™ at n = 2

(3) If nis odd and n > 3 then n* = x™ admits only two positive roots x, >
0, x3 = n such that x, < x3 and n* < x™ for x € (x,,n) and n* > x™" for x €
(—0,x,) U (n, +0) (Fig. 2).
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Fig. 2. The graps of n* and x™ atn = 3

Theorem 2. The following estimations hold for the roots x; = x;(n) < 0
and x, = x,(n) > 0 of the equation n* = x™ independently of values of n:

-1<x,(n) < —e1, 1<x,(n)<e (1)
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where, e is the base of the natural logarithms with an approximative value e ~
2.71.... The rootsx;(n) and x,(n) both decrease for large n and have the
following limits as n tends to infinity:

lim x;(n) =—-1, lim x,(n) = 1. 2
n—-+oo n—-+oo

In Table 1 approximative values of the roots x, (n) and x,(n) are shown for
some values of n.

Table 1
The roots x; (n), x,(n) and x5(n) of the equation n* = x™ for increasing n.
n x,(n) x,(n) x3(n)
2 -0.7667 2 4
3 2.4781 3
4 -0.7667 2 4
5 1.7649 5
10 -0.8267 1.3713 10
50 -0.9298 1.0889 50
100 -0.9569 1.0495 100
150 -0.9682 1.0352 150

Theorem 3. The following inequality holds forall x >n+1 > 4:
n* —x">n"(n—e) 3)

with a consequence n* — x™ > n™(n — 3) for large n.
Auxiliary results. Introduce the function F(x) = Inf(x), where f(x) =

n*x~™, x # 0. Such an idea follows from the formula F'(x) = —);((;))

classical analysis. Note that F(x) is defined for all x # 0 for even n and only for
x>0 if n is odd. F(x) is not defined if x < 0 and n is odd, but there is no
necessity introduce something in this case since n* > x™ is satisfied automatically:
n* > 0 > x™ for all x < 0. Note also that the signs of the derivatives ' and F’
coincide on the domain of F, because f > 0. Therefore f and F admit the same
intervals of increasing and decreasing. In addition,

known in

Fx)=0 & f(x) =1 &n*=x"

According to definition of F. It is clear also that F > 0 is equivalent to f >
1 that means 0 < x™ < n*, analogously, F < 0 is equivalent to 0 < f < 1 that
means n* < x™.

Lemma 1. For n > 2 the following assertions are true:

1) If n is even then equation F(x) = 0 admits one negative root x; and two
positive roots x, < x5 such that F(x) < 0 for x € (—oo,x1)U(x,, x3) and F(x) >
0 for x € (x1,0)U(0, x5)U(x3, +00).

2) If n is odd then F(x) = 0 admits only two positive roots x, < x3 such
that F(x) < 0 for x € (x,,x3) and F(x) > 0 for x € (0, x,)U (x5, +0).

In addition, x, = 2,x3 =4 ifn=2and x; = nifn > 2 (Fig. 3).
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n=6 O -0.7666646958 < 1.7&4921914|

Fig. 3. The graph of F(x) = Inf(x), where f(x) = n*x " atn = 6.

Proof. 1) For all n > 2 the function F(x) = Inf(x) can be rewritten in the
following form:

F(x) = {xlnn —nln|x|, x #0, ifniseven,
xinn—nlnx, x >0, ifnisodd.

Its derivative is

F'(x) = {lnn —nx~1 x#0, ifniseven,
Inn—nx"1, x>0, ifnisodd.

The case A. Let n be even and x < 0. Then F'(x) > 0 for all x < 0. This
implies that F(x) is increasing strictly on the interval x < 0. Hence F have to
intersect the coordinate line y = 0 on some unique point x; € (—oo, 0) from down
to up, in other words, F(x;) = 0. Moreover F(x) < 0 at x < x; and F(x) > 0 at
x <x<0.

The case B. Let n be any and x > 0. The equation F'(x) = 0 has an unique
root x* = n(lnn)~1. Since the second derivative F''(x) = nx~2 is positive for all
x # 0 at the point x* the function F attains its least value

F(x*) = ;EEF(X) =n-—nln (ﬁ) =n (1 —In (L)) (4)

Inn

It is easy to show that for x > 1 the function x(Inx)~! satisfies the
inequality

x(Inx)™1 >,
Reaching the equality at x = e only (Fig. 4). Hence n(Inn)~! > e for all

n > 1. This implies that F(x*) < 0. From F"(x) > 0 and F(x*) < 0 it follows
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then F(x) has exactly two positive roots x, and x5 such that x, < x* < x3,
moreover, F(x) < 0atx € (x,,x3) and F(x) > 0 atx € (0,x;) U (x3, +).

Uniting now the results of the cases A and B we get the proofs of the
assertions in 1) and 2).

To prove the additional assertion observe that x = n is a root of F(x) = 0.
This means that either x, or x5 coincides with n. At n = 2 the inequality x* > n
implies x, = 2. Then x3 = 4. At n > 3 we have x* < n. Then x3 = n in order to
satisfy x, < x* < x3. Lemma 1 is proved.

Proof of Theorem 1. (1) Assume that n = 2. Then clearly, F(x) < 0 on the
interval (-0, x;), where x; < 0. This means that 0 < f(x) =n*x™" <1, or
equivalently n* < x™. Moreover, F(x) increases on (-oo0,x;), therefore f(x)
increases too implying that the value of n*x™™ increases and tends to 1 (n*
overtakes x™) as x tends to x; from the left.

On the interval (x;,0) the function F(x) increases and satisfies F(x) > 0.
Therefore f(x) > 1 on (x4, 0) meaning n* > x™ (with growing n*x™™). Atx =0
the inequality n* > x™ is preserved. On the interval (0,2) we still have F(x) > 0
meaning n* > x™. However the fraction n*x™" decreases and tends to 1 (x"
overtakes n*) as x tends to 2 from the left, because decreasing of F(x). On (2,4)
we have F(x) <0 which means 0 < f(x) <1, equivalently n* < x™. The
behavior of n*x™™ near x = 2 and x = 4 can be analyzed by the same way. In
final, clearly that n* > x™ for all x > 4due to F(x) > 0. Moreover, n*x™"
increases, because so does F (x).

(2) n is even and n > 4. The proof will be the same as in the previous case
by replacing only 2 to x, and 4 to n.

(3) nisodd and n = 3. The proof is clear now. Theorem 1 is proved.

Proof of Theorem 2. In the proof of Theorem 1 we obtained in fact rough
estimates x; < 0 and 0 < x, < n(Inn)~?! for roots. Here we will improve them.
Since F can admit a negative root only if n is even, using the corresponding
expression F(x) = xInn —nln|x| we find

F(-1)=-Inn<-In2<0, F(-eYH)=—-elnn+n>0,

Where the second inequality follows from formula (4). The continuous
function F(x) = xInn — nln|x| changes its signs at the endpoints of the segment
[-1,—e1 ]. Therefore the unique negative root x; is still in (=1, —e™~1) proving
the first inequality in (1). The second inequality in (1) follows from F(1) = Inn >
Oand F(e) =elnn—n < 0.

Let us seek for x, as a least of two positive roots of F(x) = xlnn —

- X n . n . .
nln x = 0 equivalent to T o Denoting C(n) = — we obtain the equation

x(Inx)™1 = C(n),

Depending on the parameter C(n). Since lim,,_,.,C(n) = +o and x(In x)~1
decreases for 1 <x <e and admits a vertical asymptote x =1 due to

linlr1+x(ln x)~1 = +oo, then the value of the function x(In x)~! can be equal to
X—

C(n) only at an unique point (denote it x,) which depends on n and converges to 1
from the right as n —» oo (Fig. 4). The second equality in (2) is proved.

By the same say we can predict the behavior of the negative root x,; of
n* = x™ which occurs at even n only. Since n* = x™ is equivalent to F(x) =
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2 where

. X
xlnn —nln|x] =0 on the interval (—o,0) we get s = inn

introducing a new variable x = —t yields a new equation
t(lnt)~t = —C(n).

We know that t(Int)~! decreases on the interval (0,1) and has limits
Jim _t(In t)"! = —o0 and Jim t(In t)"1 = 0. Therefore t(Int)™! = —C(n)

admits an unique solution (denote it t; (n)) which belong to (0,1) and converges to
1 from the left as n — oo, in other words lim ¢;(n) = 1.
n—->oo

Pass to the old variable x = —t. Then t;(n) corresponds to x;(n) =
—t,(n), which converges to —1 from the right as n — oo. The first equality in (2)
is proved. Theorem 2 is proved.
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Fig. 4. The graph of the function y = x(In x)~! and straight lines y = C(n) atn =
3,5,10and y = —C(4).

Proof of Theorem 3. Let n > 3. Introduce the function ¢(x) = n*—x".

Since In(1+t) <t at t > 0 then for all x >n we have x™ = n"enl“(”%) <
ne*™™, This yields
Pp(x) =n*—x">n"(n* " —e* M) (5)

For all x > n. In particular (5) implies p(n +1) >n"(n—e)atx =n + 1.
Since ¢(x) increases for x > n the inequality ¢(x) = ¢(n + 1) is preserved for
all x > n+ 1. The inequality (3) is proved. The inequality n*—x™ > n"(n — 3)
follows obviously. Theorem 3 is proved.

In Table 2 results of calculations are shown which confirm Theorem 3. For
large n the difference n*—x™ increases very fast starting from values x = n + 1.
Using formula n*—x™ > n™(n — 3) we can easily predict that 10** — 1110 is
greater than 7-101°. The exact value 10! — 1129 of calculated in Maple is
74062575399. Using formula (3) gives 72817181720. Another example is 2021 —
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2129 It is greater than the number 202°-(20—3)=17-22°-1020=17-
10242 - 102%° = 1.7825792 - 10?7, given in Table 2.
The exact value of 202 — 2120 is 1818933570553048451362803599 or

approximatively 1.8189336 - 10%7.

Table 2
Lower bounds of the difference n*—x™ atx > n + 1.
n X n*—x" n"(n—e) n"(n—3)
3 4 17 7.61 0
4 5 399 328 256
5 6 7849 7130 6250
6 7 162287 153112 139968
7 8 3667649 3526179 3294172
8 9 91171007 88612527 83886080
9 10 2486784401 2433666326 2324522934
10 | 11 74062575399 72817181720 70000000000
20 | 21 1.8189336 - 10%7 1.812119491 - 10%7 1.7825792 - 10?7

Problem 1. Is it possible to make sharper the right boundaries of estimations
(1)? An idea: try to replace e to a smaller number of the kind ye®, where 0 < a <
land0<y < 1.

Problem 2. We studied mutual behavior of the functions a* and x# in partial
cases a =B =n€N. The general case a € (0,1) U (1,4+) and S € R\{0}
requires supplementary studies.
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H.A. A6ues?, 3.H. A6ues?

1Kbipabi3 Pecriybaukacel ¥FA Mamemamuka uHcmumymeol,
buwkex K., Kbipfoiz Pecriybaukacei
’Mekmen-2umHasua 24, Buwkex K., Kbipfoi3 Pecrybaukacsi

[OPEXE/NI-KOPCETKILLTI TUNTEN TEH,AEYNEPAI 3EPTTEYAE KNACCUKANBIK TANJAY
MEH KOMMNbIOTEPAIK TEXHONOTUANAPAbI MANIANAHY

AHpatna. byn maKanaga 6i3 pgopekeni KoHe KepceTKiwTi ¢GyHKUMANapabiH
KacueTTepiHe cyMeHe OTbIpbin, AdpeKeni-KepceTKiwTi TunTeri TeHaeynepai 3epTrerimis
JKOHE 0/lapAblH,  TaMblpnapblHbIH, ~ KacueTTepiH KepceTemis. MyHaan TeHnaeynep
TpaHCUEeHAEHTTI bonfaHAabIKTaH, TybipnepaiH, Typa MaHAepiH TabyaplH ewKaHaan agici
b6onmanabl. [lereHMeH, KAaaccuKanblk TangayablH, benrini  apictepi meH Maple
aHaNUTUKaNbIK ecenTey KYMeciHiH, KapaaTTapblH KoAAaHy apkbinbl 6i3 TybipnepaiH,
LeKapanapblH KepceTe anambl3 »KaHe [A3pexe KepCeTKilli LWeKCi3fgikke YMTbInFaH
KesiHgeri onapapblH *KUHAKTbIIbIFbIH anablH ana 6onxkait anamoel3. CoHbiMeH bipre, 6i3
Oopexeni KoHe KepceTKiwTi OGYHKUMAnapablH, aprymeHTTiH, YAKeH MaHAepiHaeri
avblpbIMbIHbIH, CaNasblK aHe CaHAblK TangayblH 6epemi3 KaHe KbliJaM KyblKTan
ecenTeyiiH Konalnbl ¢dopmynacblH ycbiHambI3. KecTeneppe KentipinreH ecentey
HaTUXenepi meH rpadukrTep Maple nporpammacbl KEMerimeH asnblHFaH.
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Tipek ce3pep: Maple xyieci, TpaHCLEHAEHTTIK TeHaey, Tybip, asapexeni pyHKLMA,
KepceTKiwTi pyHKuMA.

H.A. A6ues?, 3.H. A6unes?

MHcmumym mamemamuku HAH Keipaeizckol Pecriy6auku,
2. buwkek, Pecnybnauka KeipebiacmaH
llikona-2umHasus 24, 2. Buwkek, Pecnybauka KelpabiscmaH

NUCNO/NIb30BAHUE K/IACCUMECKOIO AHA/IM3A U KOMMbIOTEPHbIX TEXHO/IOTUIA B
WU3YYEHMUWN YPABHEHWUA CTENEHHO-NOKA3ATE/IbHOIO TUNA

AHHOTaumA. B gaHHoM paboTe onnpancb Ha CBOMCTBA CTENEHHOM W NOKa3aTe/IbHOM
bYHKUMIA, Mbl UCCneayem CTeNneHHO-MoKa3aTe ibHble ypaBHEHWA, YCTaHaB/IMBAaeM CBOMCTBA
X KOpHel. Tak KaK Takue ypaBHEHWA ABAAIOTCA TPAHCUEHAEHTHbIMWM, HeT meToAa
HaXOXAEHUA TOYHbIX 3HAYEHUIN KOpHeW. TemM He MeHee, UCMO/b3yA U3BECTHble MeToAbl
KNIAaCCMYECKOro aHann3a U CpeacTBa CUCTEMbl aHANUTUYECKUX BbluucaeHnin Maple, mbl
MOXXEeM OnpeaennTb rPaHULbl KOPHEN U NPeaCcKasbiBaTb UX CXOAUMOCTb MPU CTPEMIEHUN
cTeneHen K 6eckoHeyHoCcTU. Mbl TaKKe JaeM KayeCTBEHHbIA U KOJIMYECTBEHHbIA aHanu3
Pa3HOCTM MeXAy CTEMEeHHOW M NOoKa3aTeNbHOM QYHKUMAMM Npu HONbLIMX 3HAYEHUAX
aprymeHTa u npegnaraem yaobHbI meTon npubaUMKeHHOro, Ho 6bicTporo cueta.
Pe3ynbTaTbl BblYMCAEHUN, NPUBEAEHHbIE B Tabanuax, U rpaduku nosyyeHsl C NOMOLLbIO
Maple nporpammbil.

KnioueBble cnoBa: cuctema Maple, TpaHCUEHAEHTHOE YpaBHEHWE, KOPEHb,
cTeneHHaa OyHKUMA, NOKasaTesbHaa GyHKUMA.
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